
1 Introduction
The LPC54S0xx is a family of ARM© Cortex-M4 based microcontrollers
for embedded applications that features a rich peripheral set with very
low power consumption and enhanced security features. This family of
microcontrollers includes:

• One Time Programmable (OTP) storage, which stores various flags (as
fuses), Root of Trust Hash, and AES keys.

• Physically Unclonable Function (PUF) controller based on SRAM. This
controller enables the secure generation of a unique device fingerprint and
device-unique cryptographic keys.

The SRAM PUF mechanism is tightly integrated into the LPC54S0xx family.
This feature enables keys from the PUF to be directly used by the device’s
internal AES-256 encryption engine. The unique and unclonable keys provide
significant security benefits over other means of key injection or storage. The
PUF keys reduce the threat of break-once repeat-everywhere attacks due to
the foundation of the security on device-unique unclonable keys.

This application note describes a step by step process to create an Enhanced
Boot Image (Encrypted then signed) using PUF key store.

Following Secure Boot features and Security peripherals are available for this
family of devices.

• Secure Boot features on LPC54S0xx devices:

— Supports boot image authentication using RSASSA-PKCS1-v1_5
signature verification with 2048-bit public keys (2048-bit modulus, 32-bit exponent).

— Supports Root of Trust (RoT) establishment by comparing the SHA-256 hash digest of the RoT public key with OTP
memory contents.

— Supports secure anti-rollback of images through revocation of image key certificate. Supports up to 8 revocations
through OTP fuses.

— Supports boot of AES-GCM encrypted images with:

◦ 128-bit symmetric key stored in OTP memory or

◦ 256-bit symmetric key stored using on-chip SRAM PUF.

— Supports Secure Authentication Boot by enforcing RSA-2048 signed image only boot.

— Supports Encrypted Image Boot by enforcing AES-GCM encrypted images boot only.

— Supports Enhanced Image Boot by enforcing encrypted, then signed images boot only.

• LPC54S0xx supports AES-128/AES-256 encryption/decryption engine with keys stored in poly-fuse OTP or PUF key
store.

• Random number generator can be used to create keys.

Contents

1 Introduction......................................1
2 Secure Boot.....................................2
2.1 Secure boot policies and types of

secure boot images..................... 2
2.2 PUF key and OTP AES key store

...3
2.3 Using blhost PC App to create

Secure Boot................................. 3
3 Implementation................................4
3.1 Implementation overview............. 4
3.2 Building flashloader binary...........5
3.3 Building the application binary..... 5
3.4 DFU utility and Flashloader

download......................................6
3.5 Generating AES key and SHA256

of RoT key....................................7
3.6 Enrolling PUF and creating the Key

Store.. 9
3.7 Generating encrypted then signed

application binary.......................10
3.8 Programming the signed encrypted

image... 11
3.9 Programming RoTK HASH........ 13
3.10 Programming Secure Boot

configuration bits........................13
4 Revision history.............................14

AN13390
Step by step process to prepare Secure Boot for LPC54S0xx
Rev. 1 — 16-Dec-2021 Application Note

• Secure Hash Algorithm (SHA1/SHA2) module supports secure boot with dedicated DMA controller.

• Physical Unclonable Function (PUF) root key using dedicated SRAM for silicon fingerprint. PUF can generate, store, and
reconstruct key sizes ranging from 64 to 4096 bits.

2 Secure Boot
LPC54S0xx family of devices contain 64 KB ROM memory with firmware (known as boot code) in them. The boot code must
always run when the device is powered-on or is hardware-reset. The LPC54S0xx has no internal flash for code and data storage.
Therefore, images must be stored elsewhere to download on reset or it can be executed from an external memory (XIP). The
boot ROM supports loading of images into on-chip RAM from external non-volatile memory devices connected to SPI, SPIFI, and
EMC interfaces. The boot ROM forms the Root of Trust (RoT), which can secure the boot process by preventing the loading of
non-authentic application code. If the code is authentic, control is transferred to it. This establishes a chain of trusted code from
ROM to the user code. Boot ROM uses the following cryptography algorithms:

• SHA256 is used for hash function.

• NXP-defined ‘Image key certificate’ is used for public key certificates to verify that the public key in the certificate belongs
to the OEM.

• The public key of the certificate authority or the Root of Trust Key is validated using SHA256 hash check against the OTP
contents.

• RSASSA-PKCS1-v1_5-SIGN with SHA-256 hash digest is used for signature verification function. Using RSA keys with
2048-bit public key modulus and 32-bit public key exponent.

• AES algorithm is GCM mode used for encrypted boot.

— A 128-bit AES key is used when OTP is used for key store.

— A 256-bit AES key is used when PUF is used for key store.

LPC54S0xx family supports different secure boot modes based on the secure boot policy. The following sections describe
important components and concepts required to prepare the device for secure boot.

2.1 Secure boot policies and types of secure boot images
The LPC54S0xx family supports the following secure boot policies enforced through OTP bit settings:

• Enforced booting of RSA-2048 signed images only (SECUREBOOTTYPE = b’01 in OTP bank3 word 1). This is termed as
Secure Authentication Only Boot in LPC540xx/LPC54S0xx User Manual.

• Enforced booting of AES-GCM encrypted images only (SECUREBOOTTYPE = b’10 in OTP bank3 word 1). This is termed as
Encrypted Image Boot in LPC540xx/LPC54S0xx User Manual.

• Enforced booting of encrypted, then signed images only (SECUREBOOTTYPE = b’11 in OTP bank3 word 1). This is termed
as Enhanced Image Boot in LPC540xx/LPC54S0xx User Manual.

The Table 1 summarizes the above policies.

Table 1. LPC540xx OTP memory bank 3, word 1 bits

Bits Symbol Value Description (Secure Boot Type)

4:3

SECUREBOOTTYPE
b’00 Invalid if SECUREBOOTEN bit (Bit 2 of this register) is set in OTP memory bit or

in header.

b’01 Enforces booting of RSA-2048 signed images only.

b’10 Enforces booting of AES-GCM encrypted images only.

b’11 Enforces booting of encrypted then signed images only.

NXP Semiconductors
Secure Boot

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 2 / 15

Based on the above policies to authenticate secure boot code before running, the plain user image is signed and/or encrypted.
The secure boot supports the following types of secure boot images:

• Signed image: RSA-2048 signed images.

• Encrypted image: AES-GCM encrypted and authenticated images.

• Signed encrypted image: Plain image is encrypted first then signed. This policy is used in this application note.

• Encrypted signed image: Plain image is signed first, and then whole image including signature is encrypted.

All secure boot images have an image header that provides various parameters to the secure boot to initialize the boot interface,
load the address, and authenticate or decrypt the image.

2.2 PUF key and OTP AES key store
An AES key is used to encrypt image when Enhanced Image Boot policy is used for secure boot. LPC54S0xx Family supports
both OTP and PUF key store to store AES key. OTP only supports 128-bit AES key storage whereas PUF supports 256-bit AES
key and the key is stored in the form of key code. In this product family, there is a difference in the sequence how keys are used
by AES engine during encryption and decryption. This difference can be shown in below example.

Suppose, the 256-bit AES key generated by elftosb tool is:

73727170 63626160 53525150 43424140 33323130 23222120 13121110 03020100

User can use the above key sequence to generate PUF key store without changing sequence. However, when the above
sequence is used for PUF key storage, the sequence to encrypt image using this key should be in below order:

03020100 13121110 23222120 33323130 43424140 53525150 63626160 73727170

As can be seen the last word goes first, then second last, and all other words follow in this order.

This example is demonstrated in this Application Note.

When OTP is used to store key, AES-128 bit key is programmed in the same order because this key is used for
image encryption. Therefore, when OTP is used for Key storage, key sequence change is not required.

 NOTE

2.3 Using blhost PC App to create Secure Boot
Programming OTP is required, for example, in SHA2 digest of RoT public Key, Secure boot type bits, and so on. To program OTP,
the blhost utility tool is recommended, which can be downloaded from the NXP website. The blhost application is used on a host
computer to issue commands to an NXP device running an implementation of the MCU bootloader.

The blhost application with the MCU bootloader, allows a user to program a firmware application onto the MCU device without
a programming tool. LPC54S0xx does not have an inbuilt MCU bootloader that can communicate with blhost. Therefore, here
we will build this utility from NXP SDK example (flashloader example) and use DFU utility to push flash loader in the device RAM.
To create secure boot image, tools such as elftosb-gui, elftosb, HxD, and image creator tool are also used.

Below is the summary of tools used in a Table 2. These tools should be installed to prepare and program the secure boot image.

Table 2. Summary of tools used

Tool Description

DFU utility The DFU utility is the host application used to load the Flashloader binary into the internal RAM
memory of LPC540xx device connected to the host in USB DFU mode. The dfu-util.exe is an
open source command-line application. To download the tool, see dfu-util.

Table continues on the next page...

NXP Semiconductors
Secure Boot

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 3 / 15

http://dfu-util.sourceforge.net/releases/

Table 2. Summary of tools used (continued)

Tool Description

blhost PC Command-Line Interface (CLI) tools to implement MCUBOOT protocol, it is part of MCUBOOT
software package. The blhost.exe utility is an example host program used to interface with
LPC54S0xx running the Flashloader program. This tool can be downloaded from MCUBOOT.

elftosb The elftosb tool creates a binary output file that contains the user application image along with a
series of bootloader commands. The output file is known as a Secure Binary or SB file for short.
These files have the *.sb extension. The tool uses an input command file to control the sequence of
bootloader commands present in the output file. This command file is called a boot descriptor file or
BD file for short. This tool can be downloaded from MCUBOOT.

elftosb-gui The GUI tool, elftosb-gui helps the user prepare a secure application image, as well as other
useful security operations specific to target MCU platform. The Elftosb-gui tool provides intuitive
graphical interface on top of elftosb and blhost command-line applications. It also guides the user
in preparation of secure boot images required by ROM bootloader. This tool can be downloaded from
MCUBOOT.

Image Creator Tool The LPC54S0xx secure image creator tool is a command-line tool to create LPC54S0xx secure images.
The “lpc54xxx_imgcr” tool has multiple sub-commands to perform the different operations related
to LPC54S0xx secure image creation. This includes generating keys, certificates, signing images,
and encrypting the binary images bootable by LPC54S0xx boot ROM. The example described in this
application note uses lpc54xxx_imgcr_v0.1.013 (image creator Tool version v0.1.013).

Flashloader The Flashloader is the secondary bootloader program loaded into the on-chip RAM of LPC54S0xx to
support blhost. The project is located in SDK.

HxD HxD is a binary file editor. It is easy to use and HxD is free of charge for private and commercial use.

3 Implementation
This section provides information how to implement secure boot in LPC54S0xx family of devices. This application note uses
LPCXpresso54S018 development board (LPC54S018-EVK), MCUXpresso IDE version 11.4.0, and SDK version 2.10.0.

For other documents related to the board, refer to LPCXpresso54S018 development board Design Resources.

3.1 Implementation overview
Following steps are required to generate and program the encrypted then signed image for LPC54S0xx devices.

• Import SDK Flashloader Project in MCUXPresso IDE and build the binary file.

• Import the project from SDK or create your own application project. Build the binary file to be downloaded in the device.

• Download DFU Utility to program flashloader binary in the device. Use DFU mode to load flashloader binary in the
device RAM.

• Generate AES key, RoT key, Image key, and the image certificate.

• Enroll PUF and create key store for AES key.

• First encrypt and then, sign the image using AES key.

• Program the above mentioned image in the SPIFI flash.

• Program RoT Hash, Secure boot option with PUF.

• Reset the board and run secure boot code.

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 4 / 15

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/webapp/Download?colCode=LPC54XXX-IMGCR-0.1.013
https://mh-nexus.de/en/hxd/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/lpcxpresso54s018m-development-board:LPC54S018M-EVK#Design-Resources

3.2 Building flashloader binary
After importing lpcxpresso54s018_flashloader example in MCUXpresso from SDK, an executable file is built. This application
interacts with the device in order to communicate with blhost utility. MCUXpresso, by default, builds an axf file. Blhost utility uses
the binary format to load the application. Therefore, it is also necessary to convert the lpcxpresso54s018_flashloader.axf file
to lpcxpresso54s018_flashloader.bin as shown in Figure 1.

1

2

3 4

Figure 1. Creating flashloader Binary in MCUXpresso application

1. Click on Debug folder after building lpcxpresso54s018_flashloader project in MCUXpresso.

2. Select lpcxpresso54s018_flashloader.axf file and right click this file.

3. Select Binary Utility.

4. Select Create binary and it creates lpcxpresso54s018_flashloader.bin binary file in the debug folder.

The upcoming sections describe the process by which lpcxpresso54s018_flashloader.bin binary file is downloaded on the
LPC54S018-EVK board.

3.3 Building the application binary
This application note describes procedure for encrypting and then signing the executable generated by
lpcxpresso54s018_led_blinky project. The LED3 blinks after execution of the authenticated and decrypted file. Hence,
this visually helps to identify that the file was authenticated and decrypted properly. The blhost utility uses the binary

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 5 / 15

format to load the application. Therefore, it is also necessary to convert the lpcxpresso54s018_led_blinky.axf file to
lpcxpresso54s018_led_blinky.bin as shown in Figure 2.

Figure 2. Creating led blinky Binary in MCUXpresso application

3.4 DFU utility and Flashloader download
Download DFU Utility from DFU Utility website. In this project, DFU Utility version 0.10 is used (..\dfu-util-0.10-
binaries\win64\dfu-util.exe). This device supports USB DFU Utility to download flashloader binary into device RAM.
To load flashloader binary, USB1 (High speed USB) should be configured in DFU mode. To download the flashloader binary, ISP
pins must be configured as shown in below Table 3.

Table 3. Boot source selection based on ISP pins

Boot Mode ISP2 (PIO0_6) ISP1 (PIO0_5) ISP0 (PIO0_4) Description

USB1 DFU boot LOW LOW HIGH
USB DFU class is used to download
image over the USB1 High-Speed port
into SRAM.

In the LPC54S018-EVK, use the ISP push buttons to select USB1 DFU mode. Then, connect J2 (USB1) to PC using a USB Micro
cable. Run the following command in command prompt to load flashloader into RAM.

dfu-util.exe -D lpcxpresso54s018_flashloader.bin

The output is shown below.

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 6 / 15

Figure 3. Programming Flashloader using DFU Utility

After loading the flashloader, device LPC54S018-EVK is shown as USB Composite device with a VID 0x1fc9 and PID 0x01a2.
As mentioned before, the blhost utility is used to connect the device from host PC. To check if the device has connected
successfully, use the following blhost command.

blhost -V -u 0x1fc9,0x01a2 -- get-property 1

If everything is fine, the blhost command displays success status. The command and output is shown below.

Figure 4. Get Property command

3.5 Generating AES key and SHA256 of RoT key
To encrypt the image we need an AES key. Since PUF key store uses a 256-bit AES key, we must generate the key accordingly.
Use the elftosb utility tool to generate the AES-256 bit key using the following command.

elftosb.exe --keygen 256 aes256_key.key

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 7 / 15

Figure 5. Generating AES key

The above key is a plain text key and can be view in any text editor. In Windows Command Prompt, the Type command shows
the content as below.

Type aes256_key.key
B6B8F68E2CC99866EE9AA29B39988361D170658945D8BB8C56832840E0DFFC25

Figure 6. Show AES key

The above key is used to create the key store. However, to encrypt the image, the above key should be reversed.
We have reversed this key according to scheme described in Section PUF key and OTP AES key store, and stored in
aes256_keyReversed.key file. The Type command can be used to see the contents again as shown below.

Type aes256_keyReversed.key
E0DFFC255683284045D8BB8CD170658939988361EE9AA29B2CC99866B6B8F68E

Figure 7. AES reversed key

LPC54S0xx supports RSA key. To generate the RoT key, the image key, and the image key certificate, the image creator tool is
used as shown below.

To generate the 2048-bit root key, use the command below:

lpc54xxx_imgcr.exe genrsakey rotk.pem

Figure 8. Generating the 2048-bit root key

Generate 2048-bit image key using the command below:

lpc54xxx_imgcr.exe genrsakey image_key.pem

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 8 / 15

Figure 9. Generating 2048-bit image key

Generate image certificate with revocation ID 0 and signed by RoT key. Revocation ID is used during image key
certificate validation:

lpc54xxx_imgcr.exe gencert -r rotk.pem -k image_key.pem --rid 0 image_key_cert.bin

Figure 10. Generating image certificate

3.6 Enrolling PUF and creating the Key Store
Use the steps below and the corresponding numbering as shown in the Figure 11. Use elftosb-gui to enroll PUF and generate
key store.

1. Select the LPC54S0xx device.

2. Click the Device tab and select USB. Add VID =0x1fc9 and PID=0x01a2.

3. Check Enroll box in SRAM PUF enroll.

4. Check Image Key Code box and add the AES keycode file.

5. Check the Export box and Export keystore in host PC.

6. Click the Process button to create keystore. After this step, the keystore binary is stored in the host PC at the location
given in Step 5.

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 9 / 15

1

2

3

4

5

Figure 11. PUF key store generation

3.7 Generating encrypted then signed application binary
In this example, we are generating an encrypted and then signed blinky application image, which is then flashed in the device using
blhost utility. Use the steps below and corresponding numbering shown in the Figure 12 to create encrypted signed binary.

1. Select the LPC54S0xx device.

2. Create a new configuration.

3. Select the plain blinky binary image generated in MCUXpresso IDE.

4. Get the load address from the input image.

5. Select the image execution target as RAM.

6. Select the image authentication type as Signed +Encrypted. This signifies that image is encrypted first and then it is
signed.

7. Select the device key source as Key Store and select the reversed AES key aes256_keyReversed.key to encrypt the
image.

8. Selected attached in Key Store and Key store file as key_store_file.bin.

9. Select image_key_cert.bin as Image Key Certificate. This Certificate is generated as described in Generating AES
key and SHA256 of RoT key.

10. Select image_key.pem as private key for image required to sign the image. This Certificate is generated as described
in Generating AES key and SHA256 of RoT key.

11. Select the path and name of the output encrypted, then signed image.

12. Click the Process button to create the secure signed bootable blinky image.

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 10 / 15

1

2
3
4

5

6

7

8

9
10

11

12

Figure 12. Example of data entry field

3.8 Programming the signed encrypted image
The encrypted and then signed blinky image can be programmed in the SPIFI NOR Flash using blhost utility as shown in
below instructions.

1. First, check the reserved memory region by flashloader using the below command.

blhost -u 0x1fc9,0x01a2 -- get-property 12

The command above gives the following result.

Figure 13. blhost property 12

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 11 / 15

2. Now, configure SPIFI flash in QUAD SDR read mode in unreserved region, as shown in the below instruction.

blhost -u 0x1fc9,0x01a2 -- fill-memory 0x2000f000 4 0xc0000004

Figure 14. Configuring memory using blhost

3. Apply configuration from above address to SPIFI flash memory using the command below:

blhost -u 0x1fc9,0x01a2 -- configure-memory 0xa 0x2000f000

Figure 15. Configuring memory using blhost

4. The command below provides the starting address and other properties of the SPIFI flash.

blhost -u 0x1fc9,0x01a2 -- get-property 25 0xa

Figure 16. Checking Device configuration using blhost

5. As shown in the log from step 4, SPIFI flash address starts from 0x10000000. The command below erases SPIFI flash.

blhost -u 0x1fc9,0x01a2 -t 100000 -- flash-erase-region 0x10000000 0x100000

Figure 17. Erasing binary using blhost

6. Program SPIFI flash with the encrypted then signed blinky binary:

blhost -u 0x1fc9,0x01a2 -t 100000 -- write-memory
0x10000000 lpcxpresso54s018_led_blinky_signed.bin

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 12 / 15

Figure 18. Programming the binary image using blhost utility

3.9 Programming RoTK HASH
Root of Trust Hash keys are programmed in the OTP bank 1 and bank 2. Image creator tool can be used to show the Hash value
that should be programmed in the OTP.

lpc54xxx_imgcr.exe showotp -k rotk.pem

The output is shown below:

[INFO] Computing SHA256 hash of RoT key...
[INFO] SHA-256 of RoT key is: 0c8f92032ca5bc981e638a98e2585c50555d38ba0d19b739be4f9461bb60bd38
[INFO] RoTK SHA256 digest in
 OTP2_words[0,1,2,3]: ('555d38ba', '0d19b739', 'be4f9461', 'bb60bd38')
 OTP1_words[0,1,2,3]: ('0c8f9203', '2ca5bc98', '1e638a98', 'e2585c50')

Figure 19. SHA-256 of RoT Key

The blhost utility is used to program the above OTP words as shown below.

blhost -u 0x1fc9,0x01a2 -- efuse-program-once 4 0c8f9203
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 5 2ca5bc98
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 6 1e638a98
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 7 e2585c50
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 8 555d38ba
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 9 0d19b739
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 10 be4f9461
blhost -u 0x1fc9,0x01a2 -- efuse-program-once 11 bb60bd38

3.10 Programming Secure Boot configuration bits
LPC54S0xx OTP memory bank 3, word 0 should be programmed to enable secure boot. Secure boot type in this case is the
authentication and encryption enforced image, and PUF is enabled. The below table shows the description of the value to be
programmed in OTP memory bank 3 word 0.

Table 4. LPC540xx OTP memory bank 3, word 0 bits

Bits Symbol Value Description

1:0 PARITY b’00 No parity of bits [16:2].

Table continues on the next page...

NXP Semiconductors
Implementation

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 13 / 15

Table 4. LPC540xx OTP memory bank 3, word 0 bits (continued)

Bits Symbol Value Description

2 SECUREBOOTEN b’1 Secure is boot enabled.

4:3 SECUREBOOTTYPE b’11 Enforces booting of encrypted then signed images
only Secure Boot Type.

5 SIGNATURE_PREFORMAT b’0 Signature is not pre-formatted.

6 SWDEN0 b’0 In secure mode, SWD is disabled irrespective of
this bit.

7 ISP_PINS_DISABLED b’0 Ability to enter ISP mode enabled,

8 ISP_IAP_DISABLED b’0 Ability to enter ISP mode through IAP enabled.

10:9 BOOT_SRC b’00 ISP pins are used as boot source.

12:11 ISP_MODE b’00 Fall through ISP mode is USB1 DFU.

13 SWDEN1 b’0 In secure mode, SWD is disabled irrespective of
this bit.

14 USE_PUF b’1 PUF is enabled.

15 BLOCK_PUF_ENROLL_KEY_CODE b’0 Allow PUF enrollment and key code generation.

16 - b’0 Reserved.

19:17 QSPI_DELAY b’000 ROM has to wait 0 microseconds after POR reset
before access QSPI flash device.

23:20 USER APPLICATION b’0000 Default value.

31:24 REVOKE_ID b’00000000 No certificate revoked.

blhost -u 0x1fc9,0x01a2 -- efuse-program-once 12 0000401C

Reset the device. After resetting, the boot ROM verifies the secure image. If the image is authentic, control is passed to the user
code. Then, led blinky application is executed and as a result, the LED3 on the LPC54S018-EVK blinks.

4 Revision history
The table below lists the changes to this document.

Table 5. Revision history

Revision number Date Substantive changes

1 16-Dec-2021 Minor updates

0 25-Oct-2021 Initial release

NXP Semiconductors
Revision history

Step by step process to prepare Secure Boot for LPC54S0xx, Rev. 1, 16-Dec-2021
Application Note 14 / 15

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. @2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16-Dec-2021
Document identifier: AN13390

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Secure Boot
	2.1 Secure boot policies and types of secure boot images
	2.2 PUF key and OTP AES key store
	2.3 Using blhost PC App to create Secure Boot

	3 Implementation
	3.1 Implementation overview
	3.2 Building flashloader binary
	3.3 Building the application binary
	3.4 DFU utility and Flashloader download
	3.5 Generating AES key and SHA256 of RoT key
	3.6 Enrolling PUF and creating the Key Store
	3.7 Generating encrypted then signed application binary
	3.8 Programming the signed encrypted image
	3.9 Programming RoTK HASH
	3.10 Programming Secure Boot configuration bits

	4 Revision history

